
proper selection of patients is of paramount impor-
tance in the treatment of mCRC. In this review, we will 
discuss diverse approaches to overcome the problem 
of resistance to existing anti-EGFR therapies and po-
tential future directions for cancer therapies related to 
the mutational status of genes associated with EGFR-
Ras-ERK and PI3K signalings. 
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Core tip: Personalized treatment of patients with meta-
static colorectal cancer (mCRC) based on genetic profil-
ing of individual tumors is considered the future direction 
of cancer therapy. The important discovery that mutation 
of the K-ras gene is a predictor of resistance to epider-
mal growth factor receptor (EGFR) monoclonal antibod-
ies is only the first of a series of genetic predictors and 
an increasing number of molecular alterations have since 
been hypothesized to play a role in resistance to anti-EG-
FR drugs in CRC, including activating mutations in B-Raf 
and PIK3CA, and loss of expression of PTEN. A compre-
hensive molecular characterization of mCRC and a better 
understanding of the functional interactions within the 
RTK-activated intracellular pathway will be necessary in 
order to select the most appropriate therapy for each 
individual patient.
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Abstract
Administration of monoclonal antibodies (mAbs) against 
epidermal growth factor receptor (EGFR) such as ce-
tuximab and panitumumab in combination with con-
ventional chemotherapy substantially prolongs survival 
of patients with metastatic colorectal cancer (mCRC). 
However, the efficacy of these mAbs is limited due to 
genetic variation among patients, in particular K-ras  
mutations. The discovery of K-ras  mutation as a pre-
dictor of non-responsiveness to EGFR mAb therapy 
has caused a major change in the treatment of mCRC. 
Drugs that inhibit transformation caused by oncogenic 
alterations of Ras and its downstream components 
such as BRAF, MEK and AKT seem to be promising 
cancer therapeutics as single agents or when given 
with EGFR inhibitors. Although multiple therapeutic 
strategies to overcome EGFR mAb-resistance are un-
der investigation, our understanding of their mode of 
action is limited. Rational drug development based on 
stringent preclinical data, biomarker validation, and 
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INTRODUCTION
Colorectal cancer (CRC) is the third most frequently di-
agnosed type of  cancer and the leading cause of  cancer-
related deaths worldwide[1,2]. CRC is highly treatable 
when diagnosed and surgically removed at an early stage; 
however, 5-year survival is less than 10% in patients with 
unresectable metastasis[3,4]. Approximately 40%-50% of  
CRC patients develop metastatic cancer and 80%-90% 
of  these have unresectable metastases[5]. Chemotherapy 
is usually suggested for the treatment of  metastatic CRC 
(mCRC), because surgery is limited to patients who have 
no metastasis outside of  the liver or those who would 
have an appropriate amount of  liver left after the sur-
gery[4]. Conventional chemotherapy such as 5-fluoroura-
cil (5-FU)/leucovorin (LV), irinotecan, or oxaliplatin is 
still mainly used as treatment for patients with mCRC[6]. 
Moreover, combinational therapy of  oxaliplatin or iri-
notecan with 5-FU/LV has considerably improved the 
therapeutic outcome of  this group of  patients[7-10]. How-
ever, these chemotherapeutic agents have various adverse 
effects such as hair loss, nausea and vomiting[11] because 
they interfere with the division or reproduction of  rapidly 
growing normal cells such as bone marrow cells in addi-

tion to their desired effect on cancer cells. 
The recent development of  targeted or biological 

therapeutics represents a substantial advance in treatment 
for mCRC. Although the efficacy of  these targeted thera-
peutics is restricted to certain individuals because the 
drugs work on specific target proteins, these approaches 
have critically improved the survival of  patients with 
metastases. When used appropriately to treat patients ac-
cording to their molecular profiles, targeted therapeutics 
significantly prolongs overall survival and disease-free 
survival. Moreover, these treatments showed fewer ad-
verse effects such as hair loss and nausea than conven-
tional chemotherapy. Most of  the targeted therapeutic 
agents currently in development or in clinical usage are 
molecules with high affinity for growth factor receptors, 
such as epidermal growth factor receptor (EGFR)[4]. 

The recent introduction of  monoclonal antibody 
(mAb) drugs targeting EGFR such as cetuximab (Erbitux; 
ImClone, Branchburg, United States) and panitumumab 
(ABX-EGF; Amgen, Thousand Oaks, United States), 
into combination chemotherapy regimens with currently 
used drugs for the treatment of  mCRC patients has been 
shown to be effective and has widened treatment op-
tions. However, the efficacy of  these two mAbs is limited 
by the unresponsiveness of  patients harboring a K-ras 
mutation[12]. Here, we review the mechanisms underlying 
resistance to EGFR mAb therapies due to K-ras muta-
tions and discuss the current status of  drug development 
strategies to overcome the problem of  resistance in the 
treatment of  patients with mCRC. 

MONOCLONAL ANTIBODIES TARGETING 
EGFR FOR THE TREATMENT OF CRC 
EGFR 
The EGFR is a receptor tyrosine kinase (RTK) belonging 
to the ErbB family of  cell membrane receptors. Binding 
of  ligands, such as EGF or transforming growth factor 
alpha (TGFα) to EGFR induces dimerization and activa-
tion of  the receptors. This RTK is auto-phosphorylated 
and induces activation of  multiple downstream signaling 
pathways including extracellular-signal-regulated kinase 
(ERK) and phosphatidylinositol 3-kinase (PI3K)/protein 
kinase B (Akt) pathways (Figure 1). These two pathways 
are involved in the regulation of  various cell physiologi-
cal cellular processes such as proliferation, migration, 
apoptosis, and angiogenesis[13] (Figure 1). Therefore, 
dysregulation of  EGFR signaling can induce malignant 
transformation and tumor progression through activation 
of  downstream signaling. 

EGFR is frequently overexpressed or mutated, and 
such changes are associated with tumor progression and 
poor prognosis in many types of  cancers including head 
and neck cancers[14]. EGFR has also been shown to be 
highly overexpressed in 25%-82% of  cases of  CRC[15]. 
Although the clinical significance of  EGFR overexpres-
sion or gene copy number in CRC is controversial, recent 
studies indicate that these genetic characteristics are as-
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Figure 1  Epidermal growth factor receptor and its downstream signaling 
in colorectal cancer. Binding of ligands such as epidermal growth factor (EGF) 
to EGF receptor (EGFR) activates downstream Ras/ERK and PI3K/Akt path-
ways and regulates various physiological processes. EGFR administration of 
monoclonal antibodies (mAbs) (cetuximab and panitumumab) block activation 
of these pathways. Mutations of downstream molecules such as Ras, PI3K or 
Raf are associated with resistance to EGFR mAbs in patients with metastatic 
colorectal cancer (mCRC). 



sociated with prognosis or survival of  CRC patients[16-18]. 
Consequently, EGFR has attracted great attention in the 
field of  anti-cancer drug development because of  its pre-
sumed role in tumor growth and progression. Cetuximab 
and panitumumab, two monoclonal antibodies against 
EGFR, have recently been used in the treatment of  
mCRC patients and have shown effective clinical benefits 
in 10%-20% of  patients[19-22]. 

CETUXIMAB AND PANITUMUMAB 
Cetuximab and panitumumab inhibit EGFR downstream 
signaling pathways, such as Ras/ERK and PI3K/Akt 
pathways. The safety and efficacy of  these two mAbs has 
been studied in patients with EGFR-overexpressing CRC, 
and both agents have shown reliable efficacy in these pa-
tients[19-22]. In a randomized controlled trial including 329 
patients who received either cetuximab (400 mg/m2 initial 
dose followed by 250 mg/m2) and/or the topoisomerase 
I inhibitor irinotecan[23], patients that receive both drugs 
had an objective response rate of  22.9% compared with 
10.8% for those receiving only cetuximab. Cetuximab is 
used in combination with irinotecan to treat mCRC pa-
tients who are refractory to irinotecan-based chemother-
apy[24]. It is also used as a single agent for mCRC patients 
with intolerance to the irinotecan-based chemotherapy[24]. 
The efficacy of  panitumumab was studied in 463 patients 
who received panitumumab (6 mg/kg) with the best 
supportive care (BSC) or only BSC[25]. Panitumumab sig-
nificantly prolonged progression-free survival (PFS) of  
patients treated with panitumumab and BSC compared 
with patients who received only BSC[25]; the mean PFS 
in patients receiving both panitumumab and BSC was 
96 d whereas that of  patients receiving BSC alone was 
60 d[25]. Panitumumab is approved by the United States 
Food and Drug Administration (FDA) for the treatment 
of  patients with EGFR expressing mCRC after following 
fluoropyrimidine-, oxaliplatin- and irinotecan-containing 
chemotherapy[26]. This agent is also approved by the FDA 
as a single agent for the treatment of  mCRCs[26]. 

Although cetuximab and panitumumab have been 
shown efficacy in patients with EGFR-expressing mCRC, 
their benefit is restricted to only a small proportion 
(8%-23%) of  patients because mCRC harboring a K-ras 
mutation is resistant to these mAbs. Therefore, the FDA 
suggested that the K-ras gene mutational status of  mCRC 
patients should be evaluated prior to administration of  
EGFR mAbs to avoid wasting time and money[27]. 

MECHANISMS OF RESISTANCE TO 
EGFR-TARGETED mABs 
Despite evidence of  the efficacy of  cetuximab in the 
treatment of  mCRC patients, the low response rate was 
the proof  of  concept for resistance to treatment with 
anti-EGFR mAbs. There is a large body of  evidence sup-
porting the existence of  negative predictors that identify 
patients who should not be treated with anti-EGFR 

mAbs. The identification of  additional genetic determi-
nants of  primary resistance to EGFR-targeted therapies 
in CRCs is important to allow prospective identification 
of  patients who should not be treated with cetuximab, 
thus avoiding their exposure to ineffective and expensive 
therapy. Recent work has therefore focused on the analy-
sis of  oncogenic mutations in genes encoding key down-
stream effectors of  the EGFR signaling pathway[28,29]. 

K-Ras
K-ras, a member of  the rat sarcoma virus (ras) gene family 
of  oncogenes (which includes K-ras, H-ras and N-ras), en-
codes the guanosine diphosphate (GDP)- and guanosine 
triphosphate (GTP)-binding protein Ras that acts as a self-
inactivating intracellular signal transducer[30]. K-Ras act as 
an important, but not exclusive effector of  EGFR[12,31], 
signaling mainly but not exclusively through BRAF and 
the ERK axis. K-Ras can also activate PI3K through di-
rect interaction with its catalytic subunit[32]. When K-Ras 
is mutated, PI3K results in constitutive activation of  its 
downstream signaling pathway that causes the cells to be-
come independent of  EGFR signaling activation. Somatic 
mutations of  K-ras occur in 30%-40% of  CRCs and pre-
dominantly in codon 12 (approximately 70%-80%) and 
codon 13 (approximately 15%-20%) of  exon 2 (Table 1). 
K-ras mutations have emerged as the major negative pre-
dictor of  efficacy in patients receiving cetuximab. Strong 
evidence that K-ras mutations are associated with the lack 
of  response to cetuximab in chemorefractory mCRC pa-
tients led the FDA and the European Medicines Agency 
(EMEA) to restrict the use of  cetuximab as monotherapy 
or in combination with chemotherapy, to patients with 
K-ras wild type (WT) tumors[33]. Clearly, the K-ras bio-
marker identifies CRC patients likely to benefit from anti-
EGFR therapy. However, because only 20%-40% of  pa-
tients with K-ras WT will respond to cetuximab, either in 
monotherapy or in combination therapy, K-ras status alone 
does not accurately predict the subset of  CRC patients 
that will respond to EGFR mAbs.

N-Ras
Due to the low frequency of  N-ras mutations in mCRC 
(approximately 3%-5%; Table 1), mutational status of  
N-ras have not been considered as predictive biomark-
ers in the treatment of  mCRC to be applied for the anti-
EGFR mAb therapy. 

Recently, in a randomized phase 3 study of  pani-
tumumab monotherapy[34] and other preliminary find-
ings[35-40] suggest that N-ras mutations are associated with 
the resistance to cetuximab and panitumumab. In the K-ras 
WT patients, carriers of  B-Raf and N-ras mutations had 
a significantly lower response rate than those harboring 
WT B-Raf and N-ras[39]. Therefore, checking the muta-
tional status of  all ras isotype can provide additional pre-
dictive information for the prescription of  EGFR mAb 
therapy in mCRC[40].

B-Raf
BRAF is a cytoplasmic serine/threonine kinase that di-
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tion of  PIK3CA results in increased AKT/mTOR 
pathway signaling and increased cellular proliferation[46]. 
Class IA PI3Ks are heterodimers composed of  regula-
tory (p85) and catalytic (p110) subunits. Mutations in the 
PIK3CA gene occur in approximately 15%-18% (Table 
1) of  CRCs[47,48]. More than 80% of  PIK3CA muta-
tions in CRCs occur in exon 9 (60%-65%) or exon 20 
(20%-25%)[39]. The gain of  function induced by mutation 
in exon-9 (helical-domain) is independent of  binding to 
the p85 regulatory subunit but requires interaction with 
Ras-GTP. In contrast, mutations in exon-20 (kinase-
domain) are active in the absence of  Ras-GTP binding 
but are highly dependent on the interaction with p85[49]. 
PIK3CA mutations can be found together with K-ras 
or B-Raf mutations in the same tumor, and this makes 
it difficult to evaluate their individual role in defining 
sensitivity to anti-EGFR mAbs[39,50]. Patients with muta-
tion in K-ras or B-Raf and WT PIK3CA do not respond 
to cetuximab whereas patients with WT K-ras and B-Raf 
but mutations in PIK3CA may have different sensitivity 
depending on the characteristics of  the mutations they 
harbor: PIK3CA exon 20 mutations are associated with 
resistance to cetuximab whereas PIK3CA exon 9 variants 
have no significant effect on response[39]. PI3K-initiated 
signaling is inhibited by PTEN. Recent reports suggested 
that inactivation of  PTEN is associated with resistance to 
EGFR targeting agents[51,52]. However, the role of  PTEN 
loss in CRC is unclear and the lack of  a standardized 
method for PTEN detection limits the possibility of  us-
ing this marker in the clinical setting.

COMBINATIONAL THERAPIES
Because of  the crosstalk between many of  the RTK sig-
naling pathways, we do not expect a single gene depen-
dency for cancer phenotypes. Moreover, cancer cells that 
are treated with drugs that block a single molecular target 
are often able to activate alternative pathways as escape 
mechanisms to overcome the blockade. In addition, the 
effectiveness of  drugs varies depending on the muta-
tional status of  the relevant gene. Therefore, appropriate 
selection of  patients for treatment with anti-EGFR drugs 
is a major challenge in the management of  mCRC. Col-
lectively, the data available from clinical studies suggest 
that these drugs are active only in a subset of  patients. 
The most promising approaches are rational combina-
tions of  targeted treatments that include inhibitors of  
downstream effectors of  the EGFR pathway. At the 
present time, several drugs that inhibit activated BRAF, 
MEK, PI3K, Akt and mTOR are available and evalua-
tions of  these drugs in clinical trials are actively ongoing 
(Table 2)[53-77]. However, a comprehensive understanding 
of  the precise role of  these potential drug targets in CRC 
and the oncogenic dependence of  tumors on these com-
ponents is still lacking[78].

RAS inhibition
The Ras pathway is central to many nodes of  RTK sig-
naling and because it is constitutively activated in many 

rectly interacts with Ras[41]. Known B-Raf mutations are 
mainly located in the kinase domain, with a single substi-
tution of  glutamic acid for valine at codon 600 (V600E) 
accounting for 80% of  all mutations although other, less 
frequent, activating mutations affect the same residue, 
including V600A, V600D, V600G, V600K, V600M and 
V600R[42]. The V600E amino acid substitution is thought 
to be responsible for the oncogenic properties of  BRAF 
through insertion of  a negatively charged amino acid in 
the activation segment, thus mimicking phosphorylation 
of  the kinase and causing it to be constitutively active[42]. 
BRAF V600E is the most common point mutation in 
mCRC, and is present in approximately 10%-15% of  
cases (Table 1)[43]. K-Ras and BRAF function in the same 
pathway downstream of  EGFR and mutations in the 
genes encoding these proteins are mutually exclusive, 
therefore one could speculate that the presence of  an 
active mutation in one of  these two molecules is suf-
ficient to drive constitutive activation of  the pathway[43]. 
Because RAF is an important downstream effector of  
Ras, targeting RAF could be an effective strategy for the 
treatment of  K-ras or B-Raf mutated tumors. Surprisingly, 
vemurafenib (PLX4032), a selective BRAF inhibitor that 
showed pronounced efficacy in B-Raf-mutant melanoma 
patients, had only modest clinical activity in a study evalu-
ating 19 mCRC patients with the BRAF V600E muta-
tion, suggesting that the biology of  BRAF activation in 
patients with mCRC is more heterogeneous than that in 
melanoma[44]. In other studies, no response to cetuximab 
or panitumumab was observed in patients with B-Raf-
mutant mCRC[39,45].

PI3K/PTEN
One of  the major pathways activated by EGFR is the 
PI3K/Akt signaling pathway. This pathway can be de-
regulated by either inactivation of  the phosphatase and 
tensin homologue (PTEN) or by activating mutations 
of  the PI3K p110 catalytic subunit (PIK3CA). Activa-

9865 August 7, 2014|Volume 20|Issue 29|WJG|www.wjgnet.com

Table 1  Components of the epidermal growth factor recep-
tor signaling pathway and their abnormalities in colorectal 
cancer

Component
(gene/protein)

Defect in CRC Frequency in 
CRC

EGFR/EGFR Protein expression 25%-90%
Mutation Rare

Increased copy number   0%-50%
K-ras/K-Ras Activating mutation 30%-40%

(exon 2, codon 12, 13, exon 3/4, 
codon 61, 117, 146)

N-ras/N-Ras Activating mutation 3%-5%
(exon 1, codon 12, 13, exon 2, codon 

61)
B-Raf/BRAF Activating mutation (V600E) 10%-15%
PIK3CA/PI3KCA Activating mutation (exons 9 and 20) 15%-18%
PTEN/PTEN Loss of protein expression 13%-19%

Mutation
Loss of heterozygosity

CRC: Colorectal cancer; EGFR: Epidermal growth factor receptor.
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human cancers including CRC, it can bypass the EGFR-
driven signaling cascade and reduce the clinical efficacy 
of  EGFR inhibitors. Therefore, development of  new 
therapeutic strategies for CRC with mutant K-ras, is 
critically needed. Several different strategies have been 
applied to target oncogenic Ras. One of  the initial strat-
egies used was inhibition of  Ras farnesylation, a post-
translational modification that is required for localization 
of  Ras to the plasma membrane. Preclinical studies of  
farnesyltransferase inhibitors (FTIs) in transgenic mouse 
models that overexpress oncogenic Ras showed potent 
antitumor activity[79]. However, FTIs have shown little, if  
any clinical activity in patients with solid tumors, prob-
ably because of  alternative modification of  Ras such as 
geranylgeranylation[80,81]. As another approach to targeting 
oncogenic Ras, synthetic lethal screening has been used 
to identify novel anticancer agents capable of  selectively 
killing tumor cells harboring a specific mutation[82-84]. The 
idea of  reducing Ras expression by antisense or RNA in-
terference is promising, but successful application of  this 
technology is currently limited by lack of  efficient deliv-
ery, uptake, and gene silencing. Using high-throughput 
screening approaches with loss-of-function RNAi, several 
groups have identified proteins that, when lost, elicit a 
synthetic lethal response when combined with mutant 
Ras oncogenes but have no effect on cells with WT 
Ras[85-89]. Despite all these efforts, there are still no effec-

tive therapeutic agents or regimens available in the clinic 
for patients with tumors associated with K-ras mutation. 

RAF inhibitors
RAF is an important effector that functions downstream 
of  Ras in the ERK signaling pathway and therefore rep-
resents a potential target for the treatment of  tumors 
with mutant K-ras. Although the BRAF V600E inhibitor 
vemurafenib (PLX4032) shows pronounced activity in 
patients with B-Raf mutated melanoma[44], the clinical ac-
tivity of  vemurafenib in previously treated patients with 
B-Raf-mutated mCRC was more modest, with a response 
rate of  only 5% (one partial response, no complete re-
sponses) among 20 patients[44]. Interestingly, resistance 
to therapy in B-Raf-mutated CRC appears to be caused 
by persistent activation of  the EGFR signaling pathway. 
Recently, two research groups independently reported 
that blockade of  BRAF causes rapid feedback activation 
of  EGFR[90,91], which upon phosphorylation triggers sus-
tained activation of  ERK signaling and cell proliferation 
through activation of  Ras and CRAF. In vitro, inhibition 
of  EGFR activity by cetuximab restores sensitivity to 
vemurafenib. Clinical trials of  a combination of  vemu-
rafenib and cetuximab in metastatic B-Raf-mutated CRC 
are currently underway (Table 2)[92]. Additionally, resis-
tance to BRAF inhibition may also develop through acti-
vation of  other signaling pathways. CRC demonstrates a 
higher level of  PI3K/Akt signaling than melanoma, and 
B-Raf mutated colorectal cells display lower sensitivity 
in vitro to vemurafenib in the presence of  concomitant 
PTEN or PI3K mutations[93]. Although these findings 
confirm mutant B-Raf as a therapeutic target in this dis-
ease, they also show that the biology of  BRAF activation 
is clearly more heterogeneous in CRC than in other tu-
mor types. 

MEK inhibitors
Selective inhibitors of  MEK kinases seem an attractive 
target for tumors that preferentially signal through the 
Ras-RAF-MEK-ERK pathway. Proof  of  concept was 
provided in a preclinical study with the MEK inhibitors 
AS703026 or AZD6244 (Table 2), which inhibited the 
growth of  xenograft tumors formed by CRC cells with 
mutant K-ras[94]. We further investigated the effect of  
MEK inhibitors on cells with cetuximab resistance attrib-
uted to K-ras mutation using isogenic DLD-1 CRC cell 
lines (D-WT and D-MUT) that harbor WT or mutant 
K-ras alleles respectively, and found that the MEK inhibi-
tors suppressed cetuximab-resistance of  CRC cells that 
was attributed to K-ras mutation both in vitro and in vivo[94]. 
Recent studies showed that a compensatory or activat-
ing feedback loop between RAF-MEK-ERK and PI3K 
pathways counteracts the effect of  MEK inhibition[95]. 
Moreover, dual inhibition with MEK and PI3K inhibi-
tors resulted in marked inhibition of  tumor cell growth. 
In vitro studies in K-ras-mutant CRC cell lines showed that 
the presence of  activating mutations in PIK3CA or loss-
of-function mutations in PTEN resulted in insensitivity 
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Table 2  RAF, MEK and PI3K/mTOR inhibitors presently in 
the status of clinical trial in colorectal cancer

Drug Target Manufacturer Phase Indication

Sorafenib BRAF Bayer Ⅱ Colon cancer 
(combination 

with cetuximab)
PLX4032 BRAFV600E Plexxikon Ⅰ Melanoma, 

colon cancer
XL281 BRAF Exelixis Ⅰ Solid tumors
GSK1120212 MEK GlaxoSmithKline Ⅰ Solid tumors, 

Lymphoma
AZD6244 MEK AstraZeneca Ⅱ Colon cancer 

(combination 
with 

capecitabine)
AS703026 MEK EMD Serono Ⅰ Solid tumors
GDC-0973 MEK Genentech Ⅰ Solid tumors
RO5126766 MEK Hoffman-La Roche Ⅰ Solid tumors
TAK-733 MEK Millenium Ⅰ Solid tumors
RDEA119 MEK Ardea Biosciences Ⅰ Solid tumors
BGT226 PI3K Novartis Ⅰ/Ⅱ Solid tumors,

Her2 positive 
Breast Cancer

XL147 PI3K Exelixis Ⅰ Solid tumors, 
Lymphoma

XL765 PI3K Exelixis Ⅰ Solid tumors
BEZ235 PI3K Novartis Ⅰ Solid tumors
GDC-0941 PI3K Genentech Ⅰ Solid tumors
PX-866 PI3K ProIX Ⅰ Solid tumors
SF1126 PI3K Semafore Ⅰ Solid tumors
Everolimus mTOR Novartis Ⅱ Colon cancer

(combination 
with cetuximab)

Jeong WJ et al . Anti-EGFR therapy and resistance



to MEK inhibitor[96]. These studies also showed that mu-
tational activation of  PIK3CA is not functionally equiva-
lent to PTEN loss. Therefore, the authors concluded that 
PI3K pathway activation is a major resistance mechanism 
that impairs the efficacy of  MEK inhibitors in K-ras mu-
tated cancers, and it is therefore important to test wheth-
er pan-PI3K inhibitors will act synergistically with MEK 
inhibitors in cancers with coexisting PTEN and K-ras mu-
tations. Together with the previous study, this provides 
a strong rationale for combination treatment with PI3K 
and MEK inhibitors. In conclusion, although MEK inhi-
bition is theoretically an interesting approach to targeting 
K-ras activated tumors, it is very likely that MEK inhibi-
tors will only be efficient in a subgroup of  K-ras mutant 
CRCs. As we discuss in this manuscript, combination 
with other targeted agents is probably a more efficient 
approach. 

PI3K/Akt/mTOR pathway
Inhibition of  PI3K could be a feasible approach to the 
treatment of  CRC that is resistant to EGFR monoclonal 
antibodies because of  abnormal PTEN/PI3K status. 
Moreover, because the oncogene K-ras can activate the 
PI3K-Akt-mTOR pathway and such activation has been 
suggested as a possible mechanism of  resistance to MEK 
inhibitors, researchers are also interested in determining 
whether inhibitors of  the PI3K-Akt-mTOR pathway 
are effective in the treatment of  K-ras-mutant CRC. 
Zhang et al[97] examined the effects of  co-treatment with 
the mTOR inhibitor rapamycin and the MEK inhibitor 
PD89059 in K-ras mutant CRC cell lines. This combina-
tion inhibited cell proliferation with cell cycle arrest and 
induced apoptosis. Combinatory treatment with PI3K/
Akt inhibitor and BRAF inhibitor showed synergistic 
growth inhibition in B-Raf mutated CRC cell lines that 
were resistant to a BRAF inhibitor[98,99]. Given the selec-
tivity of  BRAF inhibitors for the mutant form of  B-Raf, 
the combination of  BRAF inhibitors with PI3K/Akt 
pathway inhibitors is worthy of  further investigation. 
EGFR or PI3K/Akt inhibitors combined with BRAF 
inhibition could be considered for individual cases of  
B-Raf-mutant CRCs with specific mechanisms of  PI3K 
pathway activation, such as PTEN loss. 

CONCLUSION
Personalized treatment of  patients with mCRC based on 
genetic profiling of  individual tumors is considered the 
future direction of  cancer therapy. The important discov-
ery that mutation of  the K-ras gene is a predictor of  resis-
tance to EGFR monoclonal antibodies has brought this 
approach into clinical practice as an important innovation 
for the treatment of  mCRC. However, this is only the 
first of  a series of  genetic predictors and an increasing 
number of  molecular alterations have since been hypoth-
esized to play a role in resistance to anti-EGFR drugs in 
CRC, including activating mutations in N-Ras, B-Raf and 
PIK3CA, and loss of  expression of  PTEN. These find-

ings suggest that resistance to anti-EGFR agents involves 
a complex network of  molecular alterations. Assessment 
of  the effects of  these alterations on the efficacy of  new 
drugs that selectively target proteins introduces a new 
paradigm to clinical oncology. Because of  the complex-
ity and heterogeneity of  molecular alterations in patients, 
the aim for the near future is the development of  per-
sonalized anti-cancer drugs for the treatment of  mCRC 
through definition of  the mutation profile of  key signal-
ing genes in individual tumors. A comprehensive molecu-
lar characterization of  mCRC and a better understanding 
of  the functional interactions within the RTK-activated 
intracellular pathway will be necessary in order to select 
the most appropriate therapy for each individual patient.
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